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Summary

@ Effectively distribute a set of computing
tasks to a peer-to-peer network

@ All peers want the finished product
@ Peers may join and drop freely

@ Decentralized and self-organizing



Overview

@ Summary of the project
@ “"Peer to Peer Computing”

@ " Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-
peer systems”

@ "Dynamic Load Balancing in Parellel
Processing on Non-Homogeneous Clusters”

@ Progress



Peer-to-Peer Systems

@ What types of peer-to-peer systems are
available?

@ Presents a survey of existing P2P systems

@ Which models are best for which
environments?

@ Compare and contrast systems



Characteristics of P2P

@ Decentralization
@ Scalability

@ Anonymity

@ Self-Organization

@ Cost of Ownership



Characteristics of P2P

® Ad-Hoc Connectivity
@ Fault Resilience
@ Performance

@ Transparency



P2P Algorithms

@ Centralized directory model




P2P Algorithms

@ Flooded requests model




P2P Algorithms

@ Document routing model
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Categories of P2P
Systems

@ Distributed Computing
@ File Sharing
@ Collaboration

@ Platforms



P2P Systems

@ Gives us useful factors to consider when
evaluating the performance of our system

@ Try to use the advantages from other
systems and avoid the disadvantages



Research Paper:

“Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems”

Antony Rowstron

Peter Druschel



Pastry: Quick Recap

@ Completely decentralized, fault resilient, scalable and reliable with good locality
properties.

@ Intended as general substrate for variety of P2P Internet apps like file sharing, file
storage, etc.

@ Consistent hashing: 128 bit circular id Nodelds (uniform random)

Message keys (uniform random)

@ Nodeld randomly assigned from {0, .., 2!28-1}, |L|, IM| are configuration parameters

@ Expected number of routing steps is O(log N); N=No. of Pastry nodes in the network

@ Under normal conditions: A pastry node can route to the numerically closest node to
a given key in less than log,, N steps.

@ Despite concurrent node failures, delivery is guaranteed unless more than |L|/2
nodes with adjacent Nodelds fail simultaneously

Invariant: node with numerically closest nodeld maintains objectMsg with key X'is



Pastry Design: Node

State

Each node maintains: routing table-R,
neighborhood set-M, leaf set-L.

Routing table is organized into [log,°N]

rows with 2°-1 entry each.Each entry
contains the IP address of a close node
with appropriate prefix. Choice of b -
tradeoff between size of routing table
and length of route.

Neighborhood set - nodeld , IP
addresses of | M | closest nodes , useful

for maintains locality properties.

Leaf set set of | L | nodes with

closest nodeld to current node.L - divided
into2: |L| /2 closest larger, |L| /2

closest smaller.

Leaf set
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Routing

The routing procedure is executed whenever a message arrives at a node.
First check if key is in the range of the leaf set.

If yes destination node is at most one hop away.

Else - forward the message to the node (from the routing table) with

shared prefix that is longer in one then the current. Destination is
reached in [log,’N] steps.

Else - In case entry is empty forward to a node with at least shared

prefix  like current node but it is numerically closer. The probability of the
third case is less then 0.006 for |L | = 2*2°.



Pastry API

Pastry exports the following operations:
nodeld = Pastrylnit(Credentials, application)
@ Local node join to Pastry network,init state , and return nodeld to application.
Route(msg,key)

route the given message to the node with NodeID numerically

@ Cause? Pas’rrg Iig,y

closest to th
Application layered on top of Pastry must export the following operations:
Deliver(msg,key)
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Self-organization: Node
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Arrival

Arriving Node X knows nearby node A
X asks A to route a “join” message with key = NodelId(X)

Message targets Z, whose Nodeld is numerically closest
to Nodeld(X)

All nodes along the path A, B, C, Z send state tables to X
X initializes its state using this information

X sends its state to concerned nodes



State Initialization

N
@ X borrows As A

o X, set to A,

Neighborhood Set /
\

o X, set fo B, Z

o X,sef ftoC,

o X5 |leaf set derived from
Z's leaf set



Self-organization: Node
Failure

® Detected when a live node tries to contact a failed node

@ Updating Leaf set

@ Asks the neighbor Node with largest index on the side of
the failed node.

@ Updating routing table

@ Node contacts other Nodes in the same row for an entry of
the failed Node.



Locality

Application provides the “distance” function, less distance is
more desirable.

Invariant: "All routing table entries refer to a node that is
near the present node, according fo the proximity metric,
among all live nodes with an appropriate prefix”.

Invariant maintained on self-organization.
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L=16, M=32

Number of nodes vary from 1,000 to 100,000.

200,000 ftrials - 2 nodes are selected randomly, and a message is routed between.
Results:

@ Fig 1: Expected number of routing steps is O(log N);

o Fig 2: maximum route length is [log,°’N] (for N=100,000) = 5.



Experimental results: II

[3]

@ L=16,M=32,k=5, N=5,000, 10% (500) randomly
selected nodes fail silently.

@ 2 nodes are chosen randomly, a message is routed
between these 2 nodes to 200,000 lookups



Summary and Application

@ Pastry is self-organizing, completely decentralized,
scalable and reliable for routing a message.

@ Routes to any node in the overlay network in O
(logN) steps.

@ Has locality properties, and maintain Neighboring
and Leaf set which could be used for job
replication and fault recovery

@ Building block in construction.



Load Balancing -
Research Paper

@ "Dynamic Load Balancing in Parallel
Processing on Non-Homogeneous Clusters”

@ De Guisti A. E., Naiouf M. R., De Giusti L.
C., Chichizola F.



Load Balancing -
Problems

@ How do you distribute parallel processing
tasks across a cluster of non-homogeneous
nodes?

® What methods are possible?

® Which methods give the best
performance?

@ Under what circumstances?



Load Balancing -
Experiments

@ Considers two general types of load
balancing:

@ Static - Workload is divided up before
processing

@ Dynamic - Workload may be adjusted
during processing



Load Balancing -
Experiments

@ Direct Static Distribution (DSD)
@ Each node gets the same amount of work
@ Predictive Static Distribution (PSD)

@ Each node gets an amount of work
proportional fo ifs computing power

@ Dynamic Distribution upon Demand (DDD)

® Each node demands work as needed



Load Balancing -
Experiments

@ 3 clusters of 8 compute nodes

@ Each cluster contains a different type of
node

@ Performed a sample parallel problem with all
3 forms of load balancing



Load Balancing - Meftrics
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Load Balancing - Results
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Load Balancing - Results

M Direct Static B Predictive Static @ Dynamic upon Demand  Optimum




Load Balancing

@ Plan to use a demand-driven scheme

@ Modify the algorithm to address the
problems that the network characteristics
pose

@ Job owner (master) may change

@ Nodes may drop out or become available
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