
Massively Parallel
Computing on Peer-to-

Peer Networks
Team Timeout

Jon Ludwig
Prashant Gahlowt
Young Suk Moon

Agenda

Summary of Presentation I and II

Software Design and Architecture

Pastry code and Demo

Application code and Demo

Summary of Overall
Project

Application: Distributed rendering of randomized fractal images

Render slices of fractal images in parallel

No dependence between pixel values (highly parallelized)

Many possible variations on parameters (independent tasks)

Underlying Architecture: Pastry

Self Organizing

Completely Decentralized

Scalable

Reliable and Fault Resilient

Summary of Presentation
I

Introduced the Peer-to-Peer Architecture

Introduced the application and Fractal
Images

A brief overview to Pastry

Summary of Presentation
II

Analyzed some P2P Algorithms

Centralized Directory Model

Flooded Request Model

Document Routing Model

In-depth analysis of Pastry Architecture

Analyzed some Load-Balancing techniques and Architectures

Static

Dynamic

Software Design and Architecture
Pastry Interface

Pastry Node

Pastry Node Pastry Node

Application

Message

Message Interface

Application Interface

+ NodeIdFactory()
+ PastryNodeFactory()
+ NodeHandle()
+ PastryNode()

+ NodeIdFactory()
+ PastryNodeFactory()
+ NodeHandle()
+ PastryNode()

+ NodeIdFactory()
+ PastryNodeFactory()
+ NodeHandle()
+ PastryNode()

+ NodeIdFactory()
+ PastryNodeFactory()
+ NodeHandle()
+ PastryNode()

+ deliver()
+ forward()
+ update()

+ deliver()
+ forward()
+ update()

+ GenerateFractal()
+ passCordinates()
+
+

+ getData()
+ setData()
+ getRange()
+ setRange()

Pastry Code and Demo
// Constructor
public Pastry(int bindport, InetSocketAddress bootaddr, Environment env){
 // Generate the NodeIds Randomly
 NodeIdFactory nidFactory = new RandomNodeIdFactory(env);

 // Construct the PastryNodeFactory
 PastryNodeFactory factory = new SocketPastryNodeFactory(nidFactory, bindport, env);

 // Find a bootstrap node
 NodeHandle bootHandle = ((SocketPastryNodeFactory)factory).getNodeHandle(bootaddr);

 // Create the PastryNode
 PastryNode node = factory.newNode(bootHandle);

 // Wait for the node to fully boot into the Pastry ring
 synchronized(node){
 while(!node.isReady() && !node.joinFailed()){
 node.wait(500);
 if(node.joinFailed()){
 throw new IOException("Could not join the Pastry ring."+

 " Reason:"+node.joinFailedReason());
 }
 }
 }
}

Pastry Code and Demo
public class FractalImageApplication implements Application {
 // Endpoint to send messages
 protected Endpoint endpoint;

 // Message that will be received
 private myMessage receivedMsg;

 // Some example data
 private int x, y;

 public FractalImageApplication(Node node){
 endpoint = node.buildEndpoint(this,"fractalapp");
 endpoint.register();
 }

 public void deliver(Id id, Message message){
 receivedMsg = (myMessage)message;

 }

 public void routeMsg(Id destId){

 Message msg = new myMessage(endpoint.getId(), destId, x, y);

 endpoint.route(destId, msg, null);
 }
}

Pastry Code and Demo
public class myMessage implements Message {
 private Id from, to;
 private int x, y;

 public myMessage(Id from, Id to, int x, int y){
 this.from = from;
 this.to = to;

 this.x = x;

 this.y = y;
 }

 public int getPriority(){
 return Message.LOW_PRIORITY;
 }

 public String getData(){

 return "x = "+x+", y = "+y;
 }
}

Parallel Fractal
Generation

Two common types of
fractal systems

Mandelbrot Set

Julia Set

Parallel Fractal
Generation

The value of each pixel is calculated
independently of other pixels.

Calculating the value of each pixel is
computationally intensive and cpu-bound.

The algorithm requires only a small amount
of information to generate pixel values.

Parallel Fractal
Generation

Node 1

Node 2

Node 3

Parallel Fractal
Generation

Size of the desired image is known.

Divide the image space into a set of pixel
ranges.

Distribute each pixel range to a node in the
network.

Gather the generated pixel values from the
nodes into the final image space.

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1

Distributed Fractal
Generation

Master

Connection
Listener

Node
Manager

Node 1 Node k

Distributed Fractal
Generation

Sequences of fractal images can be compiled
into animations...

Distributed Fractal
Generation with Pastry

Master

Node 1

Node 2

Node 3

Distributed Fractal
Generation with Pastry

Master

Node 1

Node 2

Node 3

Distributed Fractal
Generation with Pastry

Master

Node 1

Node 2

Node 3

Distributed Fractal
Generation with Pastry

Master

Node 1

Node 2

Node 3

Distributed Fractal
Generation with Pastry

Master

Node 1

Node 2

Node 3

Distributed Fractal
Generation with Pastry

Node 1

Node 2

Node 3

Distributed Fractal
Generation with Pastry

Node 1

Node 2

Node 3

Master

Distributed Fractal
Generation with Pastry

Node 1

Node 2

Node 3

Master

Distributed Fractal
Generation with Pastry

Node 1

Node 2

Node 3

Master

Distributed Fractal
Generation with Pastry

Node 1

Node 2

Node 3

Master

Work in Progress

Currently working on:

Implementing the distributed fractal
generation application on top of Pastry.

Notification of failed nodes.

Migration of roles (master/worker).

High-bandwidth multicast using Scribe.

References

(1)“Dynamic Load Balancing in Parallel Processing on Non-Homogeneous
Clusters”. De Guisti A. E., Naiouf M. R., De Giusti L. C., Chichizola F.
JCS&T Vol. 5, No 4. December, 2005.

(2)D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B.
Richard, S. Rollins, Z. Xu, “Peer-to-Peer Computing”. HP Labratories,
Palo Alto, March, 2002.

(3)A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems”. IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, pages 329-350, November, 2001.

