
Multicast Streaming with SplitStream
Jon Ludwig

Department of Computer Science
Rochester Institute of Technology

Email: jcl1827@cs.rit.edu

Brad Israel
Department of Computer Science
Rochester Institute of Technology

Email: bdi8241@cs.rit.edu

Abstract—Streaming multimedia systems are an important
area of research in distributed systems because of the large
bandwidth and low latency requirements. In this work we pro-
pose a content distribution system which utilizes scalable overlay
multicasting algorithms to efficiently publish large amounts of
content to many subscribers. We present a new, light-weight
implementation of the Pastry overlay network which provides
a scalable peer-to-peer overlay for addressing communication.
A light-weight implementation of Scribe and SplitStream is also
developed which build upon Pastry to provide a scalable multicast
infrastructure. Erasure codes are used to provide reliable transfer
in cases of network failures.

I. INTRODUCTION

Streaming multimedia has become a major networking task
in recent years. It presents many challenges for distribu-
tion including high bandwidth and low latency requirements.
Multimedia typically consists of audio and video which,
while often compressed, require relatively large amounts of
bandwidth. With the increase of high bandwidth connections
made available to consumers, demands for high fidelity audio
and video have also increased. This puts higher demands on
content distributors to make high-fi content available to many
consumers. In addition, audio and video are often consumed
in real time or near real time, making latency a major issue.

In this work we present a system that is fit for distributing
content throughout a content distribution network and for
distributing content to large number of end-users. This system
provides low packet duplication which reduces link stress and
overall bandwidth consumption while maintaining properties
which provide low latency. The system is logarithmically
scalable to a high number of nodes and also functions well
with a low number of nodes.

This work is based upon the work of [6], [8], [1]. We present
a new, light-weight implementation of the Pastry, Scribe, and
SplitStream systems which provide scalable content distribu-
tion via a peer-to-peer overlay network. Section II presents the
issues with streaming multimedia and multicast technologies,
Section III describes the overlay algorithms developed for this
work, and Section IV discusses the use of erasure codes to
provide fault tolerance.

II. STREAMING

The problem of streaming multimedia, or any other con-
tent, is a problem of delivering a relatively large amount of
information to a possibly large number of users in a timely
fashion. Traditionally, one way to do this is to open a separate

connection to each of the consumers and stream the content
separately to each of them. This presents many problems,
including a high degree of link stress on links, especially those
near the source. There is a large amount of packet duplication
and the number of connections scales linearly with the number
of users, which may become infeasible for a large number of
users.

This technique can be improved by only duplicating packets
when they need to be sent out on different links. This severely
reduces link stress on links near the source since the source is
only sending out a single packet for each piece of information
that should get to all users. This type of system naturally
creates a spanning tree of the users within the network, a so
called multicast tree.

One way in which a multicast system can be implemented
is at the network layer, with IP multicasting. In this system
the network routers are responsible for maintaining group
membership and distributing packets correctly. This has the
advantage of being efficient and creating optimal trees, how-
ever, there are several drawbacks. Implementing IP mulicasting
means upgrading or replacing the routers in the entire infras-
tructure which may be very costly. Extra burden is placed
on the routers to manage group information and distribute
packets correctly. IP multicasting may require globally unique
addresses for each multicast group. Additionally there are a
host of non-technical problems which arise including router
management and billing issues.

The solution we propose in this work is to utilize a peer-
to-peer overlay network to perform multicasting. This avoids
all of the problems associated with modifying the current
infrastructure. The main problems with an overlay network
are link stress and latency, which are very important for
streaming multimedia applications. Our implementation of
Pastry, Scribe, and SplitStream provide a scalable overlay
network for multicasting with properties which mitigate link
stress and latency.

While Pastry provides the underlying routing mechanism
and Scribe provides the ability to multicast data, SplitStream
addresses the problem of unfairness in multicast trees. The
problem is that nodes which are interior nodes (e.g. not leaf
nodes) in the multicast tree bear an unfair burden of having
to forward content, while the leaf nodes do not. SplitStream
constructs multiple trees and ensures that each node is only an
interior node in one tree, therefore distributing the forwarding
burden more fairly. It also addresses the problem of slow links



by allowing nodes to get pieces of the stream from multiple
other nodes. Figure 1 illustrates the problems of a traditional
multicast tree. We also utilize FEC codes which allow data
to be reconstructed from multiple trees, even if a fraction of
those trees are disabled.

Fig. 1. Problems with traditional multicast trees

III. OVERLAY NETWORKS

Overlay networks provide many desirable properties for
a streaming multimedia distribution network mentioned in
Section II. Here we discuss the design of Pastry, Scribe, and
SplitStream, which are the core technologies in the overlay
network used in this work. A light-weight implementation of
each of these systems has been developed based on the works
of [6], [7], [3], [8], [1], [2].

A. Pastry

Pastry is a scalable peer-to-peer system for addressing and
communication between peers. A Pastry “ring” is formed by
by randomly assigning nodes an address from a uniformly
distributed address space. Each node in the overlay is aware
of O(log(n)) other nodes in the network, and messages take
an average of log(n) hops from source to destination. This
means that the system is scalable both in terms of resources
consumed on each node and latency of message passing.

The assignment of node identifiers in a Pastry ring is com-
monly accomplished using a cryptographic hashing function
to uniformly choose a unique node identifier with minimal
collisions. The parameter n controls the number of bits used
for each node ID, resulting in 2n possible node IDs. The node
IDs are interpreted as base 2b for purposes of the routing
algorithm, where b is a parameter. Each node maintains a
routing table of other nodes in the system as shown in Figure
2. Each column of the routing table represents a digit 0. . . 2b.
The first row contains entries for other nodes which have a
node ID whose most significant bit matches the digit for that
column. For example, in the first row, the 3rd entry will have a
most significant bit of 2. The entry for the digit which matches
the current node’s ID is left blank. The second row contains
entries whose most significant bit matches the current node’s
most significant bit, and whose next-to-most significant bit

matches the column number. In this way the routing table is
constructed, such that for row r and column c the entry will
have digit r have a value of c and for all digits less than r
their value will match the corresponding digit in the current
node’s ID.

When a node wishes to route a message to another node it
first determines how long of a prefix their node IDs share. This
will indicate which row in the table to look at. For example,
if a node 65A1x wants to send to 65B2x, where x is any
arbitrary suffix, it will look at row 3 since all nodes in this
row start with 65x and differ in the 3rd bit. The entry for
column B will be a node whose node ID starts with 65Bx,
which may or may not be 65B2x, however in this way Pastry
can route to a node which has a closer node ID until it reaches
the destination node. With proper routing tables each message
should take a maximum of 2b hops since each node will get
the message to a node with at least one digit more correct.
With N = 2n possible nodes, a message will take dlog2b Ne
hops.

Each node also keeps a leaf set of nodes whose node IDs are
numerically close. In this way if a node does not have a proper
routing table entry it can route to a closer node by looking in
its leaf set. This guarantees message delivery unless l/2 nodes
fail from the leaf set, where the leaf set has l/2 nodes whose
IDs are less than this node’s ID, and l/2 nodes whose IDs
are greater. Figure 3 shows an example of how multiple nodes
will route to a node with ID E7A9.

Fig. 2. Routing Table of a Pastry node with ID 65A1x

When a node wishes to join a Pastry ring it must know the
address of at least one node in the ring, but it may be any
node. The node joining is referred to as the joining node, and
the known node is the bootstrap node. The joining node sends
a JOIN message to the bootstrap node requesting a randomly
generated node ID D. Then the bootstrap node uses the Pastry
routing mechanism to route a message to the node whose ID
most closely matches the requested node ID. If the ID matches,
then the bootstrapping node must generate a new ID and try
again. For each hop that the JOIN message takes from the
bootstrap node to the destination node, each intermediate node
sends back the appropriate routing table information to the
joining node. If an intermediate node shares a prefix of length
4 with the joining node, then the intermediate node sends its

2



first 4 routing table rows to the joining node; these rows will
be valid. The destination node then also sends its leaf set to
the joining node, since the joining node’s ID is closer to the
destination node’s ID than any other node, the leaf set will
be valid as well. In our implementation, when the joining
node receives these updates, it sends an acknowledgment back
to each node. If a node’s routing table has changed after it
sent information to the joining node, but before it received
an acknowledgment, it resends the information. This prevents
the joining node from receiving invalid or old information. If
the node’s information has not changed it sends an ACK-ACK
back to the joining node. When the joining node has received
and ACK-ACK for each ACK it has sent out, it knows it
has a complete set of routing information and has joined the
network. At this point the joining node sends an update that
it has joined to all nodes in its routing table and leaf set, who
consequently update their routing information to reflect this
new node.

Nodes update their routing information when they receive
a notification that a new node has joined. If a node already
has a corresponding entry in its routing table, it chooses the
node with the lowest latency to occupy that entry. In this way
the routing table maintains a list of the nodes with the lowest
latency. This latency measurement allows Pastry to display a
property of convergence. A low latency node will often occupy
the appropriate routing table entries in many nodes. Thus when
these nodes route to a node close to the low latency node, the
messages will tend to converge on the low latency node. This
property allows Scribe to generate efficient multicast trees.

Fig. 3. Pastry Routing Example

B. Scribe

Scribe uses Pastry’s routing mechanism to construct mul-
ticast trees. To construct a multicast tree Scribe generates a
group ID by hashing a topic or some data that is known
between all nodes that wish to join the multicast group. It
then routes a SUBSCRIBE message to the node with the ID
closest to this group ID. Each intermediate node that receives a
subscribe message joins the multicast tree and adds the node it
received the message from to its list of children for that topic.

As discussed previously, the convergence property of Pastry’s
routing mechanism means that messages from different nodes
will often converge on the same node. This typically results
in an efficient tree.

Any node may route a PUBLISH message with some
content to the root of the tree, who will then send this message
to its children. Each node does this until the published content
is disseminated throughout the entire tree. Figure 4 shows an
illustration of how this works.

In this system we also implemented a push-down mecha-
nism which allows nodes to limit the number of children they
have. When a node receives a SUBSCRIBE request and has
a maximum number of children already, it send back a list of
its children to the subscribing node, who chooses a new parent
and routes the SUBSCRIBE message through that node. In
this way a node may “push down” a potentially new child to
become a child of one of the node’s current children.

C. SplitStream

SplitStream builds upon Scribe’s mulicasting abilities by
generating multiple multicast trees. SplitStream generates mul-
tiple Scribe groups, each differing in the most significant bit.
If the routing tables of each node are properly constructed
the first hop will immediately route to a node whose most
significant bit matches that of the Scribe group. In this way
the network is partitioned by the most significant bit of the
node ID. All nodes who join a tree starting with 0x will
route directly to a node whose ID starts with 0x and then
progressively get closer to the actual group ID, but never
will the message be routed to a node with a different most
significant bit. This ensures that for the tree corresponding to
the group ID starting with 0x, only node’s whose ID starts with
0x will be interior nodes of this tree. Figure 5 shows what one
SplitStream tree might look like, while Figure 6 shows how a
ring might be organized into 2 SplitStream trees.

Fig. 5. One SplitStream Tree

IV. FEC CODES

Forward Error Correction, FEC, codes are the technique
that we used in our project to provide robustness to packet
delivery in the splitstream network. The basic idea of the FEC
technique is that the server sends redundant packets through

3



Fig. 4. Generating a Scribe Tree

Fig. 6. Two SplitStream Trees

the network, which allows the clients to lose a certain amount
of packets and still be able to reconstruct the proper packet.
The library we used in our project [4] was based on Rizzo’s
paper [5] that describes how to FEC techniques for reliable
packet transmission. Rizzo’s technique takes a k sized block
of data and encodes the data so that it becomes n size, where
n is larger than k. This is denoted a (n,k) code. The new
encoded packets each contain a certain amount of redundant
information so that any client that receives at least n-k packets
can decode the received packets to produce the original k sized
block of data. An example of this is shown in Figure 7

The exact process of encoding and decoding the data is
described in Rizzo’s paper [5]. The basic overview of how
encoding is handled, is that the data is placed into a matrix and
uses linear algebra techniques to expand the matrix from size
k to size n to create an encoded matrix, G, of size n x k. The
decoding process is the linear algebra equivalent of reversing
the encoding algorithm and requires some extra information,

namely the row number of the matrix G that the received
data was originally on. For our implementation purposes, this
means that all of our packets needed to contain the data’s
original index in the encoded n sized block of data.

For our project, we used the library to initialize a (4,2) FEC
code on both the server and all client. A (4,2) code means that
every MP3 data block is encoded to be four data blocks and
then sent over the network by the server. Using splitstream,
the server will send each of the four blocks to a different head
node in the four trees. The client side can then receive any
two blocks to reconstruct, or decode, the original data block
and play that piece of the song, the other two blocks could
have been lost or corrupted. This is important to our project
because when interior nodes are added or removed from a
tree, the tree has to regenerate and can cause packet loss. If
a tree is regenerating or fails, the nodes that are supposed to
be in the tree still receive packets from the other three trees
and can continue to decode and play the song even though

4



Fig. 7. FEC Codes

they are not receiving packets from their parents in one tree.
This increases the level of robustness that is needed, especially
for streaming applications. In our implementation, we send
out each data block inside of an object that also contains the
block’s index for FEC decoding and also the index into the
song. This allows the client to decode packets and place them
in the correct order to be played by our media player. The
advantage to using FEC codes, other than the robustness, is
that the algorithm can encode and decode anything that can be
represented by a byte array. In our case, we were streaming
music, but it would be very easy to extend the code to stream
video or even files across the splitstream network in a reliable
manner. Also, if a project required more or less robustness,
it is as simple as raising or lowering the n value and k value
accordingly. If the data transfer needs to happen no matter
what, the client and server could create a (4,1) code so that
the server sends out 4 packets, but the client only needs to
receive 1 of them in order to decode the packet, and the same
goes for a less robust (4,3) code where the client would need
to get any 3 out of 4 packets. This also allows the number of
splitstream trees to expand easily, so if the number of trees
increases to 16, the server and clients can, for example, create
(16,4) codes which allows the server to continue to send each
encoded piece to a different tree. The disadvantage of using
FEC codes is that when redundancy is added, it creates more
traffic overhead. The designers of a project like ours need to
take into consideration the tradeoff between packet overhead
and robustness.

V. CONCLUSIONS

This work successfully demonstrates that the combination
of Pastry, Scribe, and SplitStream can form an overlay network
that is capable of efficiently streaming media to a large group

of hosts. It also adds in FEC coding to ensure that the
media will be transmitted reliably to the clients, even during
SplitStream tree reconstruction and other network errors. Our
lightweight implementations of the overlay network protocols
allow for a simple way to test the network and view the tree
structures to gain a greater understanding of how SplitStream
networks work and how data is passed through them. The
project is also very extensible and would provide a great
starting point for any future projects that were looking to push
the boundaries of what SplitStream is capable of.

REFERENCES

[1] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. SplitStream: High-Bandwidth Content Distribution in Coopera-
tive Environments. LECTURE NOTES IN COMPUTER SCIENCE, pages
292–303, 2003.

[2] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. SplitStream: high-bandwidth multicast in cooperative environ-
ments. In Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 298–313. ACM New York, NY, USA, 2003.

[3] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: a large-
scale and decentralized application-level multicast infrastructure. Selected
Areas in Communications, IEEE Journal on, 20(8):1489–1499, 2002.

[4] Onion Networks, Inc. Onion Networks. Web page, 11 2008. Available
from World Wide Web: http://onionnetworks.com/developers/.

[5] L. Rizzo. Effective erasure codes for reliable computer communication
protocols. ACM SIGCOMM Computer Communication Review, 27(2):24–
36, 1997. Available from World Wide Web: http://www.acm.org/sigs/
sigcomm/ccr/archive/1997/apr97/ccr-9704-rizzo.pdf.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. Lecture
Notes In Computer Science, 2218:329–350, 2001.

[7] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems, 2001.

[8] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The
Design of a Large-Scale Event Notification Infrastructure. In Networked
Group Communication: Third International COST264 Workshop, NGC
2001, London, UK, November 7-9, 2001: Proceedings. Springer, 2001.

5


